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Abstract: The aim of this study is to assess the accuracy of a novel ultrasound (US) approach for lumbar spine
densitometry on overweight and obese women of variable age through a clinical validation study. The US method was
originally developed in women with body mass index (BMI) < 25 kg/m2. In this study, 382 female patients were
recruited (45–80 years, BMI > 25 kg/m2) and underwent dual X-ray absorptiometry (DXA) of lumbar spine (L1–L4) and an
US scan of the same vertebrae L1–L4, performed with a dedicated device providing both echographic images and
‘raw’ radiofrequency signals. Acquired US data were analysed through a novel automatic algorithm that performed a
series of spectral and statistical analyses to calculate bone mineral density employing an innovative method.
Diagnostic accuracy of US investigations was quantitatively assessed through a direct comparison with DXA results.
The average agreement between US and DXA diagnoses was acceptable for patients aged 45–65 years (81.5%), while a
slight decrement was observed for older patients (69.6%), which can be partially due to a decrease in DXA accuracy
because of age-related degenerations. The adopted method has a potential for early osteoporosis diagnosis in people
younger than 65 years, independent of their BMI.
1 Introduction

Osteoporosis is a chronic skeletal disease that causes reduced bone
mass and deterioration of the bone microarchitecture, resulting in
an increased risk of fracture [1]. According to the World Health
Organization (WHO) diagnostic classification, osteoporosis is
identified when bone mineral density (BMD) at the hip or lumbar
spine is less than or equal to 2.5 standard deviations (SDs) below
the mean value of a young adult reference population [2].

To give an idea of osteoporosis prevalence, we can say that in the
Caucasian population ∼50% of all women and about 20% of men
will experience an osteoporosis-related fracture at some point in
their lifetime [2], and these percentages are expected to increase in
the next decades because of population ageing.

The most common fractures are those located at spine, hip or wrist
[2]. Hip fractures are associated with an excess mortality within 1
year in the range 8–36% [3] and with a 2.5-fold increased risk of
future fractures [4]. Vertebral fractures are often associated with
disability, deformity and also mortality [5] and, in particular, they
are the best predictor of future fracture risk: a vertebral fracture
causes an up to five-fold increased risk for a further vertebral
fracture and a two- to three-fold increased risk for a different
fracture [2].

Unfortunately, osteoporosis still represents an underdiagnosed and
undertreated disease [6, 7], essentially because of the lack of a
diagnostic tool that is both reliable and suitable for population
mass screenings. In fact, the most widely adopted method for
osteoporosis diagnosis is dual X-ray absorptiometry (DXA), which
is currently considered as the ‘gold standard’ technique for BMD
measurements [8–10] and is at the basis of the operational
definition of osteoporosis provided by WHO [11]. Actually, DXA
has the ability of directly measuring BMD exploiting
well-understood physical principles with a good precision and
reproducibility [12], which also gave to DXA-based spinal BMD
assessments a recognised suitability for therapeutic monitoring
[13]. Nevertheless, the majority of osteoporotic fractures occur in
patients having a non-osteoporotic BMD level, indicating that
DXA-measured BMD has a low sensitivity in the prediction of
fragility fractures, and this is the main reason for which the use of
DXA for screening purposes is not generally recommended [14, 15].

As a consequence, osteoporotic fractures currently represent a
major cause of public health burden [16]: almost 3 million of new
osteoporotic fractures occur yearly in Europe, accounting for a
direct cost of about €40 billion and 43,000 related deaths.

Recent studies reported that BMD value, which is routinely
employed as a predictor of fracture likelihood [6], is related to
different factors, such as body mass index (BMI) and weight,
suggesting that BMI should be included in the risk assessment
tools for the evaluation of osteoporosis and subsequent probability
of fragility fractures [17–20]. In general, overweight is associated
with a higher BMD level, although it has to be underlined that this
is not always associated with a healthier bone status [21, 22].
Literature-available experimental results support the idea that
ultrasound (US) approaches for the evaluation of bone health
status can be particularly suitable for diagnostic applications in
overweight women [23]. In fact, bone health assessment is just
one out of the several biomedical applications of US devices that
are being gradually introduced into clinical practice because of
their well-known intrinsic advantages over competing technologies
(absence of ionising radiation, low costs, portability, availability in
primary care settings) [24, 25]. However, the specific clinical
routine adoption of US approaches to osteoporosis diagnosis is
still hindered by some peculiar aspects, mainly related to the yet
incomplete understanding of the physics governing the interaction
between bone structures and US waves, which results in indirect
BMD measurements, difficulties in standardising methods and
devices, and in contradictory opinions about the possible
suitability for treatment monitoring purposes. In addition, most of
the reported studies of US approaches to bone health assessment
were focused on peripheral bone sites (e.g. calcaneus), while the
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reference anatomical sites for osteoporosis diagnosis are proximal
femur and lumbar spine, and the latter, in particular, has been the
less targeted by US investigations [26, 27].

Our research group has recently introduced a new US-based
method for vertebral osteoporosis diagnosis based on the
comparison between the spectral content of ‘raw’ backscattered
signals and anthropometrically matched spectral models of
osteoporotic and healthy vertebrae, previously derived from
DXA-diagnosed patients [27]. This novel approach was first tested
in normal- and under-weight women aged 51–60 years, providing
a very good diagnostic agreement with DXA [27].

In a recent conference paper [28], we preliminarily presented a
clinical evaluation of the same approach on a cohort of overweight
and obese female patients aged 45–65 years. In the present work,
we assessed the performance of the proposed method on a larger
study population, also including elderly patients aged 65–80 years.
Diagnostic accuracy as a function of patient age and general
clinical usefulness of the new approach are critically discussed
taking into account the most recent literature. Full details of the
adopted protocol for data acquisition and processing are also
provided and commented.
2 Materials and methods

2.1 Patients

The study was conducted at the Operative Unit of Rheumatology of
‘Galateo’ Hospital (San Cesario di Lecce, Lecce, Italy). A total of
382 female patients were enrolled, according to the following
criteria: Caucasian ethnicity, aged 45–80 years, BMI > 25 kg/m2,
absence of significant deambulation impairments, medical
prescription for a spinal DXA and signed informed consent.

All the recruited patients underwent two different diagnostic
investigations: a conventional spinal DXA and an abdominal US
scan of lumbar vertebrae, as detailed in the next paragraphs.

The study protocol was approved by the hospital ethics review
board.
2.2 DXA measurements

Spinal DXA scans were performed with hip and knee both at 90° of
flexion employing a Discovery W scanner (Hologic, Waltham, MA,
USA). BMD was measured over the lumbar tract L1–L4, and the
mean value was expressed as grams per square centimetre (g/cm2).
For each patient, Hologic software also provided the T-score value,
defined as the number of SDs from the peak BMD of young
women found in the standard Hologic reference database for
Caucasian women, and the Z-score value, defined as the number
of SDs from the mean BMD of age-matched women found in the
same standard reference database. According to WHO definitions,
patients were classified as ‘osteoporotic’ if T-score ≤−2.5,
‘osteopenic’ if −2.5 < T-score <− 1.0 or ‘healthy’ if T-score ≥−1.0.
Fig. 1 US acquisition

a Picture of the employed device
b Schematic illustration of the US signal path
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2.3 US acquisitions

Abdominal US scans of lumbar vertebrae were performed using an
innovative US device developed in Lecce (Italy) within the
ECHOLIGHT Project through a collaboration between CNR-IFC
(National Research Council – Institute of Clinical Physiology) and
Echolight srl. The device was equipped with a 3.5 MHz broadband
convex US transducer and configured to provide both echographic
images and ‘raw’ unfiltered radiofrequency (RF) signals, sampled
at 40 MS/s. Fig. 1 shows a picture of the employed device and a
schematic illustration of the US signal path.

Each patient underwent a sagittal scan of the lumbar vertebrae, by
moving the probe back and forth from the xiphoid process. The scan
lasted about 1 min and generated 100 frames of RF data (frame-rate
∼1.5 fps), which were acquired and stored in a PC hard-disk for
subsequent off-line analysis. Transducer focus and scan depth
were specifically adjusted for each acquisition in order to have
vertebral interfaces located in the US focal region and in the
central part of the image. The other acquisition parameters were
kept constant to the following values: mechanical index = 0.4,
gain = 0 dB and linear time gain compensation.
2.4 US data analysis

Acquired US data were analysed through a novel automatic
algorithm that performed a series of spectral and statistical
analyses, involving both the echographic images and the
underlying RF signals, in order to calculate a new US parameter,
called ‘osteoporosis score’ (O.S.), which has been recently
demonstrated to have a strong correlation with BMD in
under-weight and normal-weight women [27].

The adopted algorithm performs diagnostic calculations on RF
signal segments corresponding to specific regions of interest
(ROIs) internal to the vertebrae, which are automatically identified
by the algorithm itself (200-point Hamming-windowed signal
portions starting after the echo from the vertebral surface, when
the amplitude of RF signal envelope reached 15% of its peak
value, as shown in Fig. 2). The aim of such calculations is to
measure the percentage of vertebral segments whose signal
spectral features correlate better with those of an osteoporotic bone
model rather than with those of a healthy one. The algorithm
actually compares RF spectra calculated from the considered
patient dataset with reference models of healthy and osteoporotic
vertebrae obtained from previous US acquisitions on
DXA-classified patients.

The implementation of the adopted algorithm has been described
in detail in a very recent paper [27] and is briefly summarised herein.

The main data analysis steps performed on each patient dataset
are:

(i) Automatic identification of vertebrae within the acquired
echographic images.
(ii) For each vertebra image, automatic identification of a specific
RF signal portion for each scan line crossing the bone surface.
(iii) Classification of each RF signal portion as ‘osteoporotic’ or
‘healthy’ on the basis of the correlation between its frequency
spectrum and each of the two age-matched models stored in a
previously obtained reference database.
(iv) For each vertebra, calculation of the O.S. value, defined as the
percentage of the analysed vertebra segments that were classified as
‘osteoporotic’ in the previous step.
(v) Calculation of the O.S. value for the considered patient as the
average of the single vertebra values.
(vi) Calculation of the conventional parameters BMD, T-score and
Z-score, as a function of the O.S. value, through specific equations
depending on patient age and BMI.

Fig. 3 shows a typical echographic image frame, both before
(Fig. 3a) and after (Fig. 3b) the automatic algorithm processing:
Fig. 3b identifies the vertebral surface and the ROI used for RF
data analysis, whose coordinates were derived from the iteration,
IET Sci. Meas. Technol., 2016, Vol. 10, Iss. 1, pp. 1–9
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Fig. 2 Identification of the RF signal segment corresponding to the ROI internal to considered vertebra: the selected 200-point RF segment started after the echo
from the vertebral surface, when the envelope reached 15% of its peak value. Once identified, the RF segment underwent a simple Hamming windowing and a FFT
calculation, in order to obtain the frequency spectrum that was used for the statistical operations described in the text
for all the scan lines crossing the vertebral surface, of the process
schematically illustrated in Fig. 2 for a single scan line.

Patients enrolled for the present study were subdivided into seven
different age intervals: 45–50 years, 51–55 years, 56–60 years, 61–
65 years, 66–70 years, 71–75 years and 76–80 years. For each of
these age intervals, a pair of reference spectral models (an
‘osteoporotic’ one and a ‘healthy’ one) was available in a database
that had been previously built following the same procedure
detailed in [27]. In particular, the subjects used to build the
age-matched models had been enrolled through the same inclusion
criteria employed in the present study: Caucasian ethnicity, female
sex, aged 45–80 years (100 women for each 5-year interval), BMI
> 25 kg/m2, medical prescription for a spinal DXA investigation.
All these patients, after being classified as ‘osteoporotic’,
‘osteopenic’ or ‘healthy’ based on the corresponding DXA
outcome and according to WHO definitions, were included in the
reference database: for each considered age interval, ‘osteoporotic’
and ‘healthy’ patients were used to build the corresponding
models through the procedure described in [27], whereas
Fig. 3 Typical echographic image frame, which identified both the vertebral sur

a Before the algorithm processing
b After the automatic segmentation

IET Sci. Meas. Technol., 2016, Vol. 10, Iss. 1, pp. 1–9
& The Institution of Engineering and Technology 2016
‘osteopenic’ patients were used, together with the ‘osteoporotic’
and the ‘healthy’ ones not included in the considered models, in
the preliminary assessments of model effectiveness and, once the
final models were available, in the derivation of the equations to
convert O.S. values in BMD, T-score and Z-score (see also later in
the text).

For a generic patient dataset to be analysed in the present study,
once the appropriate spectral models had been identified in the
reference database, the first operation performed by the algorithm
was the automatic segmentation of the vertebral interfaces within
the sequence of acquired images. This was achieved by carrying
out the following steps on each considered frame [27] (the block
diagram of the adopted algorithm is reported in Fig. 4):
† Rearrangement of image data in a rectangular matrix, in order to
simplify the subsequent processing steps (the typical acquired image
was composed of 253 scan lines having from 6000 to 10,500 points/
line, depending on the scan depth).
face and the underlying ROI for RF data analysis
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Fig. 4 Block diagram of the algorithm employed for automatic segmentation of the vertebral interfaces within the sequence of acquired images
† Brightness masking, aimed at increasing the brightness of the
central region while gradually attenuating brightness level toward
image boundaries.
† Contrast enhancement and image smoothing, implemented
through the following sequence: (i) pixel values were normalised
in the range between ‘0’ and ‘1’; (ii) contrast-limited adaptive
histogram equalisation (the image was divided into 64 identical
rectangular regions called ‘tiles’, each tile’s histogram was
equalised, and the neighbouring tiles were then combined using a
bilinear interpolation, which consists in a linear interpolation
performed both horizontally and vertically); (iii) two-dimensional
low-pass Gaussian filter (size = 100 × 100, SD = 10); (iv) further
contrast-limited adaptive histogram equalisation, performed by
repeating the same operations done in step ii).
† Histogram equalisation on the entire image (all the histograms
involved in this procedure were computed on 256 classes,
coinciding with the grey levels of the considered echographic
images).
† Thresholding, in order to transform the image into a binary map.
† Morphologic evaluations, aimed at verifying whether, among the
white pixel clusters present in the thresholded image, was there a
‘possible vertebral interface’, which is a cluster of white pixels that
has the typical features of a vertebral interface in terms of length,
thickness and position. A particularly strict cut-off was based on
4

measured length: all pixel clusters shorter than 20 mm or longer
than 45 mm were filtered out, since their length was outside the
typical physiological range for a vertebra height. The clusters
whose length was in the expected range were then ranked
according to the following criteria: (i) length: two points were
assigned to the longest cluster, and one point to the second one;
(ii) lateral position: two points were assigned to the cluster that
was the best centred in the image along the horizontal direction,
and one point to the second one; (iii) vertical position: two points
were assigned to the cluster that was the best centred in the image
along the vertical direction, and one point to the second one; (iv)
average thickness: two points were assigned to the thinnest cluster,
and one point to the second one.
† Spectral validation, consisting of a check of the RF data
corresponding to the ROI selected below a ‘possible vertebral
interface’ identified in the previous step, in order to verify if the
associated spectral content resembled the typical features of a bone
structure. This was accomplished by calculating the fast Fourier
transform (FFT) spectrum for each RF signal portion belonging to
the ROI (Fig. 2) and computing the values of the Pearson
correlation coefficient r between the spectrum itself and each of
the two appropriate reference model spectra: if at least 70% of the
spectra had r≥ 0.85 with at least one of the two model spectra the
identified interface was labelled as an ‘actual vertebral interface’
IET Sci. Meas. Technol., 2016, Vol. 10, Iss. 1, pp. 1–9
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Fig. 5 Scheme of the approach used for the comparison of US and DXA
evaluations (in our case, it was possible to classify the patients as
osteoporotic, osteopenic or healthy, both by T-score and by BMD since,
once the DXA scanner and the investigated anatomical site are fixed, each
T-score value is univocally associated to a specific very narrow BMD range)
and the RF data of the corresponding ROI underwent the subsequent
analyses (otherwise the frame was discarded). It is important to
underline that, if an ‘actual vertebral interface’ was identified in
Fig. 6 Typical echographic images and RF signals corresponding to one of the

a, c Osteoporotic patient
b, d Healthy patient
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this step, the subsequent three frames were skipped in order to
avoid reconsidering similar views of the same vertebra (otherwise
no skip was performed and the subsequent frame was analysed).

Once the listed steps had been performed on all the frames
belonging to the analysed patient dataset, the algorithm proceeded
to the following diagnostic calculations on the RF signals
corresponding to the ROIs selected under the identified vertebral
interfaces. The frequency spectrum of each RF signal portion
belonging to the considered ROI was classified as ‘osteoporotic’ if
the value of its Pearson correlation coefficient with the appropriate
osteoporotic model (rost) was higher than the corresponding
correlation value with the related healthy model (rheal), otherwise
it was classified as ‘healthy’. Then, the O.S. value for the generic
identified vertebra Vi was calculated through the following formula:

O.S.Vi =
Eiost

Ei

× 100 (1)

where Eiost
is the number of spectra classified as ‘osteoporotic’ for the

vertebra Vi and Ei is the total number of spectra belonging to the
ROI.

The O.S. value for the considered patient k is

O.S.k =
∑nk

i=1 O.S.Vi
nk

(2)
scan lines crossing the vertebral surface
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Fig. 8 Scatterplot of T-score values based on US measurements against the
corresponding DXA values for all the considered patient datasets. Line of
equality is also shown (p < 0.001; the evaluation scheme in Fig. 5 can be
used for the identification of correctly diagnosed patients, false positives
and false negatives: the horizontal and vertical lines in this graph identify
where nk represents the number of vertebrae identified in the dataset
corresponding to the patient k.

Finally, the obtained O.S.k value was used as an input parameter to
calculate the US-estimated values of BMD, T-score and Z-score
through mathematical equations incorporated in the reference
model database. For each considered age range, the adopted
equations were obtained by employing a linear regression
approach to estimate the sought parameter from O.S. values: each
equation was derived using the age-matched patients in the
reference database, excluding just those used to calculate the
models, and was then applied to obtain BMD, T-score and Z-score
for the single patients studied in the present work.

Diagnostic accuracy of the obtained results was evaluated through
a direct comparison with the corresponding DXA values. Every
patient dataset was independently included in a specific diagnostic
category (osteoporotic, osteopenic or healthy) by each employed
diagnostic technique (i.e. DXA and US): datasets that received the
same classification by both the systems were considered as ‘correct
diagnoses’. A scheme of the approach used for the comparison of
US and DXA evaluations is reported in Fig. 5.

Pearson correlation coefficient (r) was also used to assess the
correlation between BMD, T-score and Z-score values calculated
by the two diagnostic techniques.
the WHO-established T-score diagnostic thresholds)
3 Results and discussion

Fig. 6 reports a direct comparison between typical echographic
images acquired on an osteoporotic patient and on a healthy one,
together with the RF signals corresponding to one of the scan
lines crossing the vertebral interface. We can note that the two
echographic images are qualitatively similar and the same is true
for the time-dependent behaviour of single RF signals, with the
slight visible differences being due to an occasional coincidence
and not to actual characteristics of the two considered diagnostic
categories. Therefore, it was not possible to discriminate
osteoporotic patients from healthy ones without the described
analysis of the spectral content involving a statistically significant
number of RF signals. The results obtained through this kind of
analysis are illustrated and discussed in the rest of the text.

For 78.3% of the analysed patients US diagnosis (osteoporotic,
osteopenic and healthy) coincided with the corresponding DXA
one, as visually emphasised by the graphs reported in Figs. 7 and 8.
Fig. 7 Scatterplot of US-estimated BMD against the corresponding
DXA-measured values for all the considered patient datasets. Line of
equality is also shown (p < 0.001; the evaluation scheme in Fig. 5 can be
used for the identification of correctly diagnosed patients, false positives
and false negatives: the horizontal and vertical lines in this graph identify
the BMD diagnostic thresholds, which are valid only to classify lumbar
spine investigations performed with the DXA scanner model employed in
the present study)
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Fig. 9 shows the corresponding graph obtained for Z-score values.
In this case, taking into account the definition of Z-score and the
operational definition of osteoporosis, it is not possible the direct
identification on the graph of correctly diagnosed patients, false
negatives and false positives employing the scheme shown in
Fig. 5. However, a statistically significant correlation between US
output and corresponding DXA parameter values was found also
for Z-score (r = 0.72, p < 0.001).

Overall, the diagnostic performance of the adopted algorithm, as
summarised by the graphs reported in Figs. 7–9 and by the
corresponding r values, was only slightly inferior to the one
recently reported for the same method applied on thinner women
(diagnostic agreement with DXA = 91.1%, r = 0.84 [27]), therefore
documenting that the proposed approach can be effectively
employed for osteoporosis diagnosis independently of patient
BMI. In fact, provided that some further tailored optimisations of
the adopted method are possible in order to improve the accuracy
in the case of overweight and obese patients (as discussed later in
the text), the observed differences in diagnostic accuracy with
respect to previously reported results [27] can be mainly attributed
to the different size of the enrolled study population (382 patients
in the present study, 79 in the previous one) and to the wider
considered age range (45–80 years versus 51–60 years).
Fig. 9 Scatterplot of Z-score values based on US measurements against the
corresponding DXA values for all the considered patient datasets. Line of
equality is also shown (p < 0.001)

IET Sci. Meas. Technol., 2016, Vol. 10, Iss. 1, pp. 1–9
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Table 1 Comparison between DXA-measured and US-estimated BMD
values as a function of age range

Age
range,
years

Number
of

patients

DXA BMDa,
g/cm2

US BMDa, g/
cm2

Diagnostic
agreement,

%

Correlation
(r)

45–50 22 0.947 ± 0.090 0.968 ± 0.159 86.4 0.76
51–55 75 0.935 ± 0.149 0.959 ± 0.264 81.3 0.76
56–60 98 0.879 ± 0.132 0.897 ± 0.225 83.7 0.74
61–65 85 0.902 ± 0.159 0.929 ± 0.290 77.7 0.66
66–70 44 0.861 ± 0.122 0.834 ± 0.191 63.6 0.79
71–75 32 0.911 ± 0.186 0.910 ± 0.241 78.1 0.73
76–80 26 0.841 ± 0.106 0.849 ± 0.164 65.4 0.67

amean ± SD.
Actually, the effect of patient age on diagnostic accuracy was
studied in detail in the present work and the corresponding results
are reported in Table 1. The graphs showing US-estimated BMD
against the corresponding DXA-measured values for single age
ranges are also reported in Fig. 10 for the most populated age
intervals, in order to provide a further visual emphasis on the
measured correlation levels as a function of patient age.

From data reported in Table 1, it is evident that the maximum
diagnostic accuracy (86.4%) was found in correspondence of the
youngest investigated patients (45–50 years), while the minimum
accuracy (65.4%) was obtained for the oldest recruited women
(76–80 years). Therefore, on one hand, we can say that diagnostic
performance of the adopted algorithm was between ‘reasonable’
Fig. 10 Scatterplots of US-estimated BMD against the corresponding DXA-mea

a 51–55 years
b 56–60 years
c 61–65 years
d 66–70 years
For each reported age range, the line of equality and the calculated value of Pearson correlatio
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and ‘good’ for all the studied age intervals, but, on the other hand,
a patient age effect on diagnosis accuracy was present and
deserved some more detailed comments.

First, it is interesting to observe that the weighted average of
diagnostic accuracies for patients in the age interval 45–65 years
was 81.5% (range 77.7–86.4%, Table 1), whereas the
corresponding weighted average in the age interval 66–80 years
was 69.6% (range 65.4–78.1%, Table 1). This is a first indicator
that the diagnostic agreement between US and DXA diagnoses is
somewhat better for patients younger than 65 years with respect to
the older ones.

Second, we can note that diagnostic agreement shows a kind of
‘local peak’ (78.1%, Table 1) in correspondence of the patients
aged 71–75 years. Actually, by looking at the average value of
DXA BMD for those patients (0.911 ± 0.186 g/cm2, Table 1), we
can see that this value appears abnormally high with respect to
those observed in the other 5-year age intervals regarding patients
older than 65 years. In fact, the observed average value of DXA
BMD for patients aged 71–75 years is very similar to the
corresponding value measured on patients aged 61–65 years
(0.902 ± 0.159 g/cm2, Table 1). This means that the 32 recruited
patients aged 71–75 years, on the average, were healthier than
could be expected on the basis of their age, giving a diagnostic
agreement between DXA and US diagnoses (78.1%, Table 1) that
was very close to the one obtained for patients aged 61–65 years
(77.7%, Table 1). Then, taking into account this particular
situation for patients aged 71–75 years, the diagnostic agreement
for the other patients older than 65 years, whose average values of
DXA BMD were aligned with typical expected values, was always
sured values for different age ranges

n coefficient (r) are also shown (p < 0.001 for all)
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between 65 and 66%. These discrepancies between DXA and US
measurements in the elderly patients are not necessarily due to US
errors, but they could be at least partially attributed to DXA
inaccuracies, since it is known that age-related degenerative
changes in the lumbar spine region may affect the accuracy of
DXA scans in elderly patients [29–31].

Finally, the values of Pearson correlation coefficient between
DXA-measured BMD and corresponding US-obtained results (see
Table 1 and Fig. 10) showed a somewhat different trend with
respect to the discussed behaviour of diagnostic accuracy (Pearson
correlation coefficients referred to T-score and Z-score
measurements were always very close to the r values reported in
Table 1 and Fig. 10 for BMD measurements). The different trends
of diagnostic accuracy and correlation measurements are probably
due to the fact that US measurements are intrinsically affected by
bone quality properties, which are an important determinant of
actual bone strength [32], whereas DXA BMD values directly
reflect the calcium content measured in the investigated region.
This could in principle represent an added value of the adopted
US approach, since it could integrate bone quantity and bone
quality providing a final output that is more closely related to the
real bone strength, but further dedicated studies are needed to
investigate these aspects through detailed comparisons with
diagnostic techniques that are intrinsically better suited for bone
quality assessment (e.g. quantitative computed tomography [33,
34]).

Overall, independently of bone quality influence, there is at least
one possible optimisation of the adopted approach that has the
potential to improve the diagnostic agreement with DXA, which
reflects the so-called ‘bone quantity’. In fact, the spectral models
used in this study had been derived using the same approach
described in [27] for thinner women (i.e. they were obtained from
patients aged in the same 5-year interval and having BMI in the
same range of the considered patient), but while in the case of thin
women [27] the condition BMI < 25 kg/m2 actually identified a
quite narrow BMI range (since patients with BMI < 20 kg/m2 are
very rare), the actual BMI range identified by the condition BMI >
25 kg/m2 was much wider (since, although most of these patients
have BMI in the range 25–30 kg/m2, a significant portion is
distributed in the BMI range 30–35 kg/m2 and even beyond).
Therefore, the diagnostic accuracy of the proposed approach on
overweight and obese women could be further improved, and
probably brought to a level similar to the one found for thinner
subjects, by specialising the models for narrower BMI ranges.
Obviously, this will require a longer recruitment period, in order
to ensure a statistically significant number of patients for each
BMI range in both reference database and study population.
4 Conclusion

The feasibility of a novel US-based approach for spinal densitometry
on overweight and obese women was demonstrated in a wide age
interval (45–80 years).

The average diagnostic agreement with reference gold standard
represented by DXA was acceptable for patients aged 45–65 years
(81.5%), while a slight decrease was observed for older patients
(average diagnostic agreement = 69.6%). However, this can be at
least partially due to a decrease in DXA accuracy because of
age-related degenerations in the lumbar spine region that may
affect the reliability of DXA output for elderly patients.

Therefore, on the basis of available results, the adopted method
has a potential for early osteoporosis diagnosis through mass
population screenings in people younger than 65 years,
independently of their BMI. On the other hand, the actual
diagnostic accuracy in older patients needs to be verified through
further studies employing additional reference techniques (e.g.
quantitative computed tomography), which will also quantify the
ability of the proposed US methodology to estimate the actual
bone strength even better than DXA, thanks to the assessment of
bone quality parameters.
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