IET Science, Measurement & Technology '
The Institution of

Research Article Engineering and Technology

ISSN 1751-8822

Received on 18th March 2015
Revised on 29th July 2015
Accepted on 25th August 2015
doi: 10.1049/iet-smt.2015.0042
www.ietdl.org

Validation of an automatic segmentation
method to detect vertebral interfaces in
ultrasound images

Matteo Aventaggiato’, Francesco Conversano?, Paola Pisani?, Ernesto Casciaro?,
Roberto Franchini?, Aimé Lay-Ekuakille3, Maurizio Muratore*, Sergio Casciaro? ™

"Echolight Srl, Lecce, Italy

2National Research Council, Institute of Clinical Physiology, Lecce, Italy
3Department of Innovation Engineering, University of Salento, Lecce, Italy

40.U. of Rheumatology, Galateo Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
= E-mail: sergio.casciaro@cnr.it

Abstract: Aim of this study was to perform a detailed clinical validation of a new fully automatic algorithm for vertebral
interface segmentation in echographic images. Abdominal echographic scans of lumbar vertebrae L1-L4 were carried
out on 150 female subjects with variable age and body mass index (BMI). Acquired datasets were automatically
processed by the algorithm and the accuracy of the obtained segmentations was then evaluated by three independent
experienced operators. Obtained results showed a very good specificity in vertebra detection (93.3%), coupled with a
reasonable sensitivity (68.1%), representing a suitable compromise between the detection of a sufficient number of
vertebrae for reliable diagnoses and the limitation of the corresponding computation time. Importantly, there was only
a minimum presence of ‘false vertebrae’ detected (2.8%), resulting in a very low influence on subsequent diagnostic
analyses. Furthermore, the algorithm was specifically tuned to provide an improved sensitivity (up to 73.1%) with
increasing patient BMI, to keep a suitable number of correctly detected vertebrae even when the acquisition was
intrinsically more difficult because of the augmented thickness of abdominal soft tissues. The proposed algorithm will
represent an essential added value for developing echographic methods for the diagnosis of osteoporosis on lumbar

vertebrae.

1 Introduction

Osteoporosis and related fractures are becoming an important
worldwide public health problem, associated with a heavy
economic burden [1]. For proper management and prevention of
osteoporosis, the introduction of cheap and user-friendly methods
for population screening is required [2].

Currently, the most adopted method for osteoporosis diagnosis is
dual X-ray absorptiometry (DXA), which provides a measure of
bone mineral density (BMD). Unfortunately, DXA is not available in
primary care settings nor as a screening tool, because of the issues
related to ionising radiation employment (i.e. high costs, device
bulkiness, need of dedicated structures with certified operators).
Nevertheless, DXA is presently considered the gold standard
reference for BMD measurement and osteoporosis diagnosis [2—5].

A possible alternative is represented by the employment of
dedicated ultrasound (US) techniques, which are radiation-free,
portable, less expensive than DXA and available in primary care
settings. In fact, bone health assessment is just one out of the
several biomedical applications of US systems that have been
introduced in the last years because of their mentioned intrinsic
advantages over competing technologies [6—16]. In this context,
the effectiveness of several quantitative US (QUS) methods for
bone health assessment and osteoporosis diagnosis has been
recently investigated [17-20]. However, although QUS approaches
have the potential to combine mineral density (‘bone quantity’)
with mechanical strength (‘bone quality’) [18, 20-23], their actual
accuracy is still somewhat uncertain since different studies aimed
at evaluating clinical effectiveness of QUS systems reported
contradictory findings [24-28].

An US device for osteoporosis diagnosis was recently developed in
Lecce (Italy) by our research group within the ECHOLIGHT Project
through a collaboration between National Research Council, Institute
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of Clinical Physiology (CNR-IFC) and Echolight srl. The important
aspects of this system are [29-36]: (i) US examinations are carried
out through a clinically-available echographic transducer that works
in reflection mode and is employable on lumbar spine and proximal
femur, which are the reference anatomical sites for osteoporosis
diagnosis  but  cannot be  investigated by  current
commercially-available QUS devices; (ii) diagnostic information is
obtained by a novel algorithm that performs a series of spectral and
statistical analyses combining both echographic images, used to
identify and select the region of interest (ROI), and the
corresponding ‘raw’ unprocessed radiofrequency (RF) signals,
employed to analyse the bone structure; (iii) diagnostic
measurements are always performed on a specific ROI within the
target bone, which is automatically identified on the basis of both
morphological and spectral characteristics; (iv) data analysis takes
into account patient body mass index (BMI); (v) the algorithm is
integrated with a database containing reference spectral models of
osteoporotic and healthy bones for different combinations of patient
age, sex, BMI and anatomical site.

The automatic identification of target bone and ROI is a critical
task, whose actual effectiveness has a direct influence on final
output accuracy, especially in the case of spinal investigations,
which are carried out through abdominal US scans. In this case, in
fact, the proper segmentation of vertebral surfaces is made difficult
by factors such as the strong variability of abdominal anatomy
from subject to subject and the presence in the image of various
echogenic interfaces (e.g. abdominal aorta walls) that could be
misinterpreted as vertebral surfaces. For these reasons, the typical
algorithms adopted for vertebral segmentations in biomedical
images obtained through magnetic resonance imaging or X-ray
applications are ineffective on US acquisitions [37-45].

In a recent conference paper [46], we reported a preliminary
clinical validation of the first version of our method for automatic



segmentation of vertebral interfaces in echographic images. In the
present work we describe the implementation of an updated
version of our segmentation algorithm, in which two additional
parameters were introduced, and a more extended and accurate
clinical validation was performed.

2 Materials and methods

2.1 Data acquisition

The US device developed within the ECHOLIGHT Project (see
previous  section), equipped with a 3.5-MHz convex
clinically-available echographic transducer, was used to carry out
abdominal US scans of lumbar vertebrae L1-L4 on 150 female
subjects with variable age (range: 56-65 y; mean: 60.7+2.7 y)
and BMI (range: 18.5—40.5 kg/m?; mean: 26.7 4.1 kg/m?). The
adopted probe frequency belongs to the range typically employed
for abdominal US investigations in clinical contexts, since it
ensures a good compromise between the image resolution and the
required penetration depth.

US scans were carried out by a researcher who was not used to
perform echographic acquisitions but received just a 3-h specific
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each acquisition in order to keep vertebral interfaces in the US
focal region and in the central part of the image, taking into
account that the thickness of soft tissues between skin and
vertebrae was usually larger for subjects with higher BMI values.
The other echographic parameters were the same for all the US
scans: power=45%, gain=0dB, mechanical index=0.4, and
linear time gain compensation.

2.2 Segmentation algorithm

The flow chart of the implemented algorithm is reported in Fig. 1.
For each acquired frame, RF signals were band-pass filtered in
1.0-2.5 MHz by a finite impulse response filter, in order to reduce
the possible noise presence at frequencies lower than 1 MHz and
higher than 2.5 MHz, emphasising the contributions of the most
penetrating  frequencies within the transducer bandwidth.

—

Polynomial fitting
thresholding

Nr of clusters
over threshold
>07?

No

| Geometrical ranking |
L 2

‘ Best interface selection |

Nr of analysed
frames < 100 ?

Details of the "Image processing" block

}

l 1.0 - 2.5 MHz band-pass filtering
l Full-wave rectification

v
L

|
|
100 kHz low-pass filtering ‘
|

v
Envelope matrix creation

v
‘ Normalisation in 0-255 range ‘

l Power-like compensation (eq. 1-2) ‘

l Brightness masks (eq. 3-4) ‘

Fig. 1 Flow chart of

a Implemented segmentation algorithm

L4
Image rescaling to 512 x 512
elements with “nearest neighbour
interpolation”
L 2
Normalisation in 0-1 range ’
v
1rst contrast optimisation l
[

|
|
‘ 2D-Gaussian filtering
|

v
2nd contrast optimisation

b Zoom of the ‘Image processing’ block. The corresponding effects of single processing steps on echographic images are shown in Figs. 3 and 4

IET Sci. Meas. Technol., pp. 1-10
© The Institution of Engineering and Technology 2015



5000 T T T T

4000

3000

2000

1000

0

-1000

Amplitude (a.u.)

-2000

-3000

-4000 -

—RF
—=-Envelope {

. 1 1 1 1
SDOQQZUO 2250 2300 2350 2400

1 1 1 1 1
2450 2500 2550 2600 2650 2700
Samples

Fig. 2 Typical RF signal (dashed line) and the corresponding envelope (continuous line)

Afterwards, in order to obtain a full-wave rectification, the absolute
value of each RF signal sample was calculated and the obtained
signals were 100-kHz low-pass filtered. The output of this step
was the envelope of the original RF signal (see Fig. 2), which was
then employed to generate the B-Mode US images used in the
next steps of the segmentation algorithm.

The RF signal envelopes of the considered frame were organised
in a matrix called Env_mat and having size Npix X Njines, Where Npix
is the number of samples per scan line, which is proportional to scan
depth, and Ny, is the number of scan lines (253 in each frame).
Env_mat values were then normalised in the range 0-255 and
graphically represented as an echographic image that is considered
as the starting point of the actual segmentation process (Fig. 3a).

Since vertebral surfaces were expected to be in the central part of
the image, Env-mat underwent a power-like compensation in order to
attenuate upper and lower image portions. This was accomplished
through a matrix called Exp_tgc, which had Ny X Njines €lements
and was defined as

Exp,tgc[i, j]

i . ;
ERTT i<025 Ny 1<) < Nyjnes
. pix
i+02-N . ;
?me; 0.25 Ny <i<0.55-Nyy 1<) < Ny
. pix
_11s; 0.55- Ny <i<0.75- Ny 1<) < Nyjpeg
LN 0 75 N, <i<09. Ny 1<j<N,
05N ; . pix < 0u. pix =J = WVlines
. pix
Npix —i j j
W; 0.9 'Npix <i< Npix I<j= ]vlines
. pix

(M

The values of the numeric coefficients reported in (1) were
empirically obtained in order to optimise the segmentation
algorithm results by highlighting the central area of the image,
where, usually, the vertebral interface is expected to be. Each
element [i, j] of Env_mat was raised to the power represented by
the element [i, j] of Exp_tgc, obtaining the matrix Env_mat2
(corresponding to the image reported in Fig. 3b)

Env-malZ[i,j] = Env_mat[i,j]EXp-’gc["J] @)
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The matrix Env_mat2 was then multiplied element by element by
two brightness masks (Mask; and Mask,), which emphasised the
central image portion along horizontal and vertical directions,
respectively, and were defined as

24N, —4 .
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The image obtained after the application of brightness masks as
defined in (3) and (4) is shown in Fig. 3¢. As for (1), also the
numeric coefficients reported in (3) and (4) were empirically
obtained to optimise the emphasising effect on the image central
area.

The resulting data matrix was rescaled to 512 x 512 elements by
means of the ‘nearest neighbour interpolation’ and normalised in
the range 0-—1; then, it underwent the hereinafter described series
of image processing steps. Image contrast was optimised through a
‘contrast-limited adaptive histogram equalisation’: first, the image
was divided into 64 identical rectangular regions (called ‘tiles’),
each tile’s histogram was then equalised and the neighbouring tiles
were combined using bilinear interpolation to eliminate artificially
induced boundaries (the corresponding obtained image is reported
in Fig. 3d). Afterwards, the image was filtered by using a
two-dimensional low-pass Gaussian filter having size =50 x 50 and
SD=5 (the resulting image is shown in Fig. 4a) and a further
‘contrast-limited adaptive histogram equalisation’ was applied
(providing the image reported in Fig. 4b).
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Fig. 3 Effect of single processing steps on a typical echographic image (first part)

a Initial echographic image (simply obtained from the RF signal envelope)
b Image obtained after the application of (1)
¢ Image resulting from the application of brightness masks as defined in (3) and (4)

d Image obtained after the contrast optimisation operated through the contrast-limited adaptive histogram equalisation

After the described image processing steps, the image was
thresholded (threshold value=0.95) to become a binary matrix
(corresponding to the black and white image in Fig. 4c). At this
stage, the image matrix dimensions were restored to Npyix X Niies in
order to assure an unambiguous correspondence with RF signal
matrix and related envelopes.

All the clusters of white pixels present in the thresholded image
were sequentially numbered (Fig. 4d) and, in order to take into
account the shape of retained clusters and to verify if they actually
corresponded to a vertebral interface, for each of them, the local
maxima of single scan lines were identified in the corresponding
envelope matrix and interpolated by a second order polynomial
curve, whose endpoints were located on the outer scan lines.
Clusters presenting the absolute value of the first polynomial
coefficient higher than 0.3 were discarded, otherwise they
underwent the subsequent evaluation. Afterwards, the length of
each identified cluster was measured as the distance between the
second order polynomial endpoints: if the result was outside the
range 2045 mm, which represents the typical physiological height
range of lumbar vertebrae, the cluster was discarded. If no cluster
satisfied both the length and shape requirements, the frame was
discarded and a new frame was considered, otherwise all the
clusters having both length and shape coefficient in the sought
ranges were ranked according to the following criteria:

(a) length: 2 points were assigned to the longest cluster and 1 point to
the second one (motivation: once the clusters whose length was not
compatible with a vertebral height had been discarded, this criterion
promoted the longest interfaces, since they cross more scan lines and
therefore have the potential to provide more diagnostic information);

(b) average vertical thickness: 2 points were assigned to the thinnest
cluster and 1 point to the second one (motivation: empirical trials
documented that the ‘optimal’ interaction between US beam and
vertebral surface produces a sharp thin white line on the
echographic image, therefore this criterion promotes the interfaces
presenting the minimum average thickness);

(c) vertical position: 2 points were assigned to the cluster that was the
closest to the image centre along the vertical direction and 1 point to
the second one (motivation: this criterion promotes the interfaces that
are better positioned with respect to the US beam focal region);

(d) lateral position: 2 points were assigned to the cluster that was the
closest to the image centre along the horizontal direction and 1 point
to the second one (motivation: the closer a cluster is to the image
centre along the horizontal direction the less it is influenced by
side lobe effects and boundary artefacts, therefore this criterion
promotes the interfaces associated to a better signal quality);

(e) parallelism to probe surface: 2 points were assigned to the cluster
whose inclination angle with respect to the propagation direction of
the incident US beam was the closest to 90° and 1 point to the second
one (motivation: this criterion promotes the interfaces that are
parallel to incident US frontwaves, since they provide the
maximum backscatter);

(f) relative conmtrast: 2 points were assigned to the cluster whose
coordinates were associated to the maximum average value in the
Env_mat matrix and 1 point to the second one (motivation: this
criterion promotes the interfaces characterised by the highest average
brightness, in order to provide the subsequent algorithm for diagnostic
calculation with data characterised by minimum noise influence).

At the end of the described ranking process, the cluster that
received the highest total score was assumed to be representative
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Fig. 4 Effect of single processing steps on a typical echographic image (second part)

a Image obtained after the application of the two-dimensional Gaussian filter

b Image resulting from the second application of the contrast-limited adaptive histogram equalisation
¢ Thresholded image, showing clusters of white pixels corresponding to vertebral interface areas
d Vertebral interfaces (red lines) obtained by interpolating the local maxima of single scan lines with a second order polynomial (after the subsequent ‘geometrical ranking’ step, the best

interface was selected, which, in this case, was the one labelled with 2”)

of an actual vertebral interface and the previously calculated second
order polynomial was sent to the ‘convex image generation’ process
(see next paragraph), in order to highlight the identified vertebral
interface with a red line superimposed on the corresponding
sectorial echographic image.

2.3 Convex image generation

For each acquired data frame, the envelope matrix Env_mat defined
in the previous paragraph underwent also a parallel processing, in
order to obtain the conventional sectorial echographic images
usually produced by a clinically-available convex transducer and
to highlight on them the possible vertebral interfaces identified by
the segmentation algorithm. This was accomplished through the
following processing steps:

(a) Env_mat was multiplied element by element by the brightness
masks Mask; and Mask, defined by (3) and (4);

(b) the resulting matrix was filtered by a two-dimensional low-pass
Gaussian filter (size=10x10; SD=1), in order to reduce the
possible high-frequency noise;

(c) the matrix was transformed into a sectorial image by taking into
account radius and aperture angle of the employed convex US
transducer;

(d) the obtained image was compressed to an 8-bit image;

(e) if the segmentation algorithm described in the previous paragraph
detected a vertebral interface, the corresponding second order
polynomial was used to superimpose a red line on the image in
correspondence of the identified vertebral surface, otherwise this
step was skipped;
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(f) the image was saved in Portable Network Graphics (PNG)
format.

A typical obtained image is reported in Fig. 5, showing a
conventional sectorial echographic image in which the vertebral
interface automatically identified by the algorithm was highlighted
with a red line. It is important to note that two further vertebral
interfaces were visible in Fig. 5, but the algorithm selected the
‘optimal’ one (best position and best geometric properties).

Fig. 5 Typical echographic image with the automatically identified
vertebral interface emphasised by the bold red line



2.4 Expert operator validation

The accuracy of the implemented algorithm was evaluated by three
independent experienced operators, who had previously received a
specific training to recognise vertebral interfaces in abdominal
echographic images and to identify the most suitable ones for our
diagnostic purposes. In our study, the validation procedure of each
frame was independently repeated by more than one operator
because, in certain conditions, the possible presence of artefacts
(such as abdominal air bubbles or abnormal soft tissue attenuation)
could affect the frame validation depending on the personal
operator experience.

For each investigated subject, all the 100 PNG images
corresponding to the 100 acquired RF frames, obtained at the end
of the convex image generation process (see previous paragraph)
were assessed by each expert operator, who was always blind with
respect to other operator findings. Based on operator’s judgment,
each image frame was classified as ‘true positive’ (if there was a
red line highlighting an ‘optimal’ vertebral interface, Fig. 6a),
‘true negative’ (if there were no red lines nor suitable vertebral
interfaces, Fig. 6b), ‘false positive’ (if there was a red line
highlighting something different from a vertebral interface or if the
highlighted interface was not the best one, Fig. 6¢), or ‘false
negative’ (if there were no red lines, although an ‘optimal’
vertebral interface was present, Fig. 6d).

Sensitivity and specificity of the automatic algorithm in vertebral
surface identification according to the response of each operator were
computed through the following formulas

True positives
True positives + False negatives

sensitivity =

®)

True negatives

specificity = (6)

True negatives + False positives

Sensitivity and specificity values were considered both as a function
of patient BMI and on the whole enrolled population.

To evaluate the consistency of the segmentation algorithm, 100
true positive frames were randomly selected for each expert

operator and the Absolute Length Error (ALE) and Relative
Length Error (RLE) were calculated as

ALE = |L, — L, N

RLE = |LAL;LO| -100% (8)

(0]

where L, is the length of the vertebral interface calculated by the
segmentation algorithm (see par. 2.2) and Lo is the length of the
vertebral interface identified by the expert operator.

The actual algorithm accuracy was also evaluated through the
standard F';-score

p-r

Fi=2
ptr

©)

where p and r are respectively the precision and recall calculated as

True positives

p (10)

" True positives + False positives

True positives

(1n

r= — p
True positives + False negatives

3 Results and discussion

Tables 1-3 report the results of the automatic segmentation
validation performed by expert operator #1, #2, and #3
respectively. Table 4 shows the values of ALE and RLE calculated
according to (7) and (8), respectively. Table 5 summarises the
accuracy of the segmentation algorithm as expressed by the F'-score.

All the expert operators documented that the most frequent
segmentation errors were ‘false negatives’ (i.e. frames that
presented an undetected vertebral interface), whose average
incidence was 18.9%. On the other hand, ‘false positives’,
including both the wrong segmentation of structures different from

c

d

Fig. 6 Examples of possible classifications attributed by experienced operators to PNG images resulting from the automatic segmentation

a True positive

b True negative
¢ False positive
d False negative
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Table 1 Results of the automatic segmentation validation performed by the expert operator #1

BMI range, Number of Number of True True False False Sensitivity, Specificity,
kg/m? subjects frames positives, % negatives, % positives, % negatives, % % %

<25 80 8000 43.6 32.4 2.0 21.9 66.5 94.1
25-30 48 4800 39.5 41.4 3.3 15.8 715 92.6
>30 22 2200 33.1 49.8 4.4 12.7 72.3 91.9

all 150 15,000 40.8 37.8 2.8 18.6 68.7 93.2
Table 2 Results of the automatic segmentation validation performed by the expert operator #2

BMI range, Number of Number of True True False False Sensitivity, Specificity,
kg/m? subjects frames positives, % negatives, % positives, % negatives, % % %

<25 80 8000 43.0 32.2 2.2 22.6 65.6 93.6
25-30 48 4800 39.3 41.6 3.4 15.7 71.4 92.4
>30 22 2200 33.2 51.7 4.4 10.7 75.7 92.1

all 150 15,000 40.4 38.1 2.9 18.7 68.4 92.9
Table 3 Results of the automatic segmentation validation performed by the expert operator #3

BMI range, Number of Number of True True False False Sensitivity, Specificity,
kg/m? subjects frames positives, % negatives, % positives, % negatives, % % %

<25 80 8000 42.1 33.4 2.0 22.6 65.1 94.4
25-30 48 4800 38.8 41.0 2.9 17.3 69.2 93.4
>30 22 2200 32.9 49.8 4.2 13.2 71.3 92.3

all 150 15,000 39.7 38.2 2.6 19.5 67.1 93.7

Table 4 Evaluation of the segmentation consistency by means of
Absolute Length Error and Relative Length Error (respectively, (7) and (8))
performed by the three expert operators on 100 true positive frames
randomly selected

Expert Absolute length error (mean  Relative length error (mean
operator + standard deviation), mm + standard deviation), %

1 25+20 3.2+238

2 3.1+£3.2 3.8+2.6

3 3.2x24 4.0+3.4

mean 29+21 3.7+£29

Table 5 Measurement of the segmentation accuracy by means of the
F;-score calculation as reported in (9)

Expert operator Fi-score, %

1 79.2
2 78.9
3 78.2
mean 78.8

vertebral interfaces and the segmentation of a vertebral interface that
was not the best one available in the considered frame, represented
only 2.8% of the analysed frames. This is also visually emphasised
in Fig. 7, highlighting the strong prevalence of correctly
segmented frames (average accuracy=78.3%) over the total
segmentation errors (21.7%), which, in most of cases, are ‘false
negatives’. Therefore, not only the automatic segmentation process
showed a good success rate, but also the mistakes had a negligible
influence on the final diagnosis, since there were just few cases in
which a non-vertebral structure was identified as a vertebra, and its
effects were minimised by statistical analyses performed on
samples being mostly composed by actual vertebrae. We also
verified that the vertebral detection was not very sensitive to slight
movements of the probe: once the operator learnt how to perform
sagittal echographic acquisitions of the lumbar vertebrae, which
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was done during the 3-h specific training session, the vertebrae
were segmented with a reproducible rate even in the presence of
slight probe movements due, for instance, to patient breathing.

In fact, the proposed approach showed a very high specificity in
vertebra detection (over 93% for each operator), coupled with a
reasonable sensitivity (68.1% on the average). These results are
also visually emphasised in Figs. 8 and 9, respectively.

In particular, Figs. 8§ and 9 show that variations in algorithm
performance as judged by different operators were essentially
negligible, while both specificity and sensitivity presented slight
but visible trends as a function of patient BMI. In fact, the average
specificity gradually decreased from 94.0% for normal- or
under-weight subjects (BMI <25 kg/m?) to 92.8% for over-weight
ones (BMI in the range 25-30kg/m?), finally reaching the
minimum value (92.1%) for obese women (BMI > 30 kg/m?). On
the other hand, the average sensitivity showed the opposite
behaviour, being equal to 65.7, 70.7 and 73.1%, for normal-/
under-weight, over-weight, and obese subjects, respectively.

These trends were expected because of the specific algorithm
tuning, which was optimised, on one hand, to be highly specific
(even at the expenses of some sensitivity decrements) and, on the
other hand, to have a sensitivity increasing with patient BMI.
These implementation choices were motivated by the precise
reasons herein detailed.

First of all, there was the mentioned necessity of minimising the
number of ‘false vertebrae’ detected (i.e. false positives), in order to
assure the reliability of osteoporosis diagnoses obtained from
different algorithms, separately developed within the same research
project and taking as input data the coordinates of vertebral interfaces
automatically segmented by the presently discussed algorithm [31,
33-35]. This explained the decision to favour specificity with respect
to sensitivity, which was also due to the empirical observation that
the opposite choice had a negative effect on the subsequent
diagnostic algorithm, since it caused a significant extension of
computational time without any benefit for final accuracy.

Simultaneously, it was important to ensure, for each investigated
patient, the correct identification of a suitable number of vertebral
interfaces, taking into account that the difficulty of the
corresponding segmentation increased with patient BMI because of
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the augmented thickness of intervening soft tissues. In fact, the positives’ and ‘false nagatives’ in Tables 1-3) decreased from
actual percentage of frames containing a vertebral interface 65.3% for normal-/underweight subjects to 55.5% for over-weight
suitable for diagnostic analyses (given by the sum of ‘true ones, and to 45.3% for obese women. Therefore, in order to
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compensate for the progressively reduced availability of appropriate
frames with increasing patient BMI, the automatic segmentation
algorithm was opportunely tuned to provide a corresponding
gradually better sensitivity (at the expenses of the reported slight
decrements in specificity).

To evaluate the segmentation consistency, we used ALE and RLE,
which were calculated according to (7) and (8), respectively. As
reported in Table 4, the mean value for the three expert operators,
evaluated on a random selection of 100 true positive frames, was
29+2.1mm for ALE and 3.7+2.9% for RLE. Moreover the
algorithm accuracy was evaluated by means of the F-score, which
ranged from 78.2 to 79.2% for the three expert operators. Overall,
the algorithm employed in this work was an optimised version of
the one presented in [46], thanks to the implementation of two
additional parameters in the ranking process of possible vertebral
interfaces (parallelism to probe surface and relative contrast, see
par. 2.2). Although the validation procedure adopted in the present
paper was more severe than the previous one, since the number of
enrolled patients was increased by 50% and the judging expert
operators were three in place of just one, the global effectiveness
of the proposed automatic segmentation was substantially
confirmed: average values of specificity and sensitivity were 93.3
and 68.1%, respectively, against the corresponding 93.4 and
69.1% obtained in the referred work [46], which provided a
F-score of 79.6%.

To further improve the algorithm performance, future studies will
experimentally evaluate the opportunity of differentiating algorithm
settings for each specific vertebra to be recognised in the lumbar tract
L1-L4 and, possibly, using proper machine learning algorithms to
improve frame classification in terms of specificity and sensitivity.
Moreover, a proper real time processing could be tested to
improve the B-Mode view and help the operator in the
identification of deep vertebral interfaces.

4 Conclusions

The implemented method for automatic segmentation of vertebral
interfaces in echographic images was validated by three
experienced operators on 15,000 image frames acquired on 150
patients during routine clinical activity. The overall average results
documented a very high specificity (93.3%), which was a very
important requisite in order to avoid deteriorating the accuracy of
subsequent analyses, and a reasonable sensitivity (68.1%), anyway
representing a suitable compromise between the detection of a
sufficient number of vertebrae for reliable diagnoses and the
limitation of the corresponding computation time.

Importantly, the algorithm was specifically tuned to provide an
improved sensitivity (up to 73.1%) with increasing patient BMI, in
order to keep a suitable number of correctly detected vertebrae
even when the acquisition was intrinsically more difficult because
of the augmented thickness of abdominal soft tissues.

The proposed algorithm will represent an essential added value for
all the developing US methods for the assessment of vertebral health
assessment based on abdominal echographic acquisitions.
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